No Complete Problem for Constant-Cost Randomized Communication

Yuting Fang Ohio State University

> Nathaniel Harms EPFL

Lianna Hambardzumyan Hebrew University of Jerusalem

> Pooya Hatami Ohio State University

STOC 2024

Outline

- 1. Communication Complexity
 - Models and the Constant-Cost Randomized class BPP⁰
- 2. Landscape of BPP^0
 - A infinite *k*-HAMMING DISTANCE Hierarchy
 - No complete problem
- 3. Proof Sketch
- 4. Open Problems

Deterministic model

The cost of protocol is the number of bits exchanged.

(Public-coin, bounded-error) Randomized model

Randomized models are more powerful!

Example: EQUALITY problem

Deterministic: n bits

Randomized: O(1) bits, by hashing

The *k*-HAMMING DISTANCE Problem

Generalization of $\operatorname{Eq}\nolimits$

$$\mathsf{HD}_k(x,y) := 1 \iff \mathsf{dist}(x,y) = k$$

 $R(EHD_k) = \Theta(k \log k)$ [Yao03, HSZZ06, Sag18]

 \Rightarrow when k is constant, HD_k admits **constant**-cost randomized protocols.

Define BPP^0 as the class of problems with such **constant-cost** public-coin randomized protocols.

- most extreme case
- more "fine-grained" understanding
 - distinguishes public vs. private randomness
 - "dimension-free" relation [HHH22]
- ...

but structure of problems still unclear

e.g., size of largest monochromatic rectangle

Define BPP⁰ as the class of problems with such **constant-cost** public-coin randomized protocols.

• How to use randomness to get the extreme efficient protocols?

Define BPP⁰ as the class of problems with such **constant-cost** public-coin randomized protocols.

- How to use randomness to get the extreme efficient protocols?
- Is there a problem \mathcal{P} captures all constant-cost randomized protocols?

 \Rightarrow a *complete* problem \mathcal{P} for the class

Deterministic model with oracle access

Deterministic model with oracle access

 \mathcal{P} constant-cost reduces to \mathcal{Q} if $\mathsf{D}^{\mathcal{Q}}(\mathcal{P}) = O(1)$.

Constant-Cost Reduction

Example: Planar Adjacency

First suppose Alice and Bob have vertices x, y in a tree T.

Any planar graph can be partitioned into 3 forests.

 \Rightarrow Adjacency in planar graphs *constant-cost reduces* to Eq.

Constant-Cost Reduction

Example: Large-Alphabet Hamming Distance

Alice and Bob receive $x, y \in [\Sigma]^n$, where $\Sigma = \{a_1, \ldots, a_m\}$.

Wish to decide whether the Σ -quary Hamming distance is k.

 \Rightarrow can be solved by a single query to 2*k*-HAMMING DISTANCE

• Is there a complete problem \mathcal{P} for the class under constant-cost reductions?

a problem that captures constant-cost randomized protocols.

• Is there a complete problem \mathcal{P} for the class under constant-cost reductions?

a problem that captures constant-cost randomized protocols.

[CLV19] EQ is not complete for BPP.
[HWZ22, HHH22] EQ is not complete for BPP⁰.
[FHHH24] There is no complete problem for BPP⁰.

Check out Nathan's homepage niharms.github.io for more art work!

Proof Overview

There is no complete problem for BPP⁰

Main Theorem

For every problem $Q \in BPP^0$, there is a sufficiently large k, such that HD_k does not reduce to Q.

Requires lower bound against arbitrary oracles in BPP⁰

Proof Overview

Main Theorem

For every problem $Q \in BPP^0$, there is a sufficiently large k, such that HD_k does not reduce to Q.

- Requires lower bound against arbitrary oracles in BPP⁰
- Step 1. Constant-cost problems forbid large GREATER-THAN submatrices
- Step 2. Permutation-Invariance of HD_k and Oracle Queries
- Step 3. Transform the task to lower bound against a single query

Step 1: Forbidden large GREATER-THAN

Super-constant problem: $R(GT) = \Theta(\log n)$.

Oracles in BPP^0 can only have constant size GREATER-THAN.

Step 2: Permutation-invariant Queries

Observe that HD_k are permutation invariant.

Step 2: Permutation-invariant Queries

Observe that HD_k are permutation invariant.

Main Lemma

Suppose HD_k reduces to some problem $Q \in BPP^0$, the answers to oracle queries can be forced to be permutation invariant.

Step 3: Constant number of queries to one query

 HD_k contains GREATER-THAN submatrix such that

- size $\geq k \times k$
- (x, y) pairs of **0**-entries are permutation of each other
- (x, y) pairs of 1-entries are permutation of each other

Step 3: Constant number of queries to one query

If queries Q_1, \ldots, Q_c are permutation-invariant:

- \Rightarrow exists **one** query Q_i that distinguishes 0 and 1s in the GREATER-THAN (of size $\geq k \times k$)
- \Rightarrow violate constant-cost!

Open Problems

• Does the *k*-Hamming Distance hierarchy capture all constant-cost randomized protocols?

Solved in follow-up work - no

- Quantitative bounds for *k*-HAMMING DISTANCE separation
- Structure of problems in BPP⁰

 $\circ~$ e.g., size of monochromatic rectangle

- Relation to other classes:
 - \circ BPP⁰ vs. Sign-rank
 - One- vs. Two-sided Error

Thank you!